文章编号:0253-2239(2001)08-0996-05

宽带消波长依存波导耦合器的统计优化设计

陈抱雪¹) 袁一方¹) 矶 守²)

(1),上海理工大学光学和电子信息工程学院,上海 200093)

(2),日本东京农工大学工学部应用化学系,日本

摘要: 提出了一种适合于宽带消波长依存波导耦合器的统计优化设计方法。使用该方法,在 1280 nm~1650 nm 带域内 对 Si 基 SiO₂ 光波导作了包括偏振变动优化在内的 50%和 20%功率耦合比的消波长依存波导耦合器的设 计。两个器件经三维波束传播法(BPM)模拟运行验证,结果表明,在 370 nm 宽带内,两个直交偏振态均实现了功 率耦合比为(50±2.1)%和(20±1.4)%、偏振变动量分别小于 0.65%和 0.20%的良好特性。

关键词: 消波长依存波导耦合器;统计优化设计;光波导;SiO₂光波导;宽带功率耦合器

中图分类号:TN928 文献标识码:A

1 引 言

自 90 年代中期,国际互联网在全球范围内迅速 普及,数据信息业务量以每年翻两倍、光纤传输容量 以每年翻一番的速度迅猛增长。据预测,10 年后先 进工业国家的用户终端通信容量将达 10 Mbit/s~ 100 Mbit/s 程度^[1]。为了使通信能力适应这种发 展,国际上当前采取的主要措施是,在用户接入网推 广光纤到户并导入波分复用^[2~5];在主干网,开发 100 Gbit/s 量级的光时分复用传输,并结合波分复 用实现 Tbit/s 量级的超高速大容量光通信^[6~11]。 在光纤资源的利用方面,除充分挖掘现行光通信的 两个主要窗口 1310 nm 和 1550 nm 的潜力外,近年 又开发了中心波长为 1400 nm 和 1625 nm 的两个 窗口。形成了带宽为 1300 nm~1650 nm 的超宽信 道。

在光纤到户网络中,由于信号分路的需要,须 导入大量1×N多路分支耦合器件^[12]构成这类器 件的基本结构Y分支波导可以覆盖上述带宽。通信 上作为备用信道,许多接点处需要增加一路输入,构 成2×N分支耦合。这类器件的输入部分,需要2×2 的3dB宽带消波长依存耦合器(WINC)^{13]}。另外, 20%宽带消波长依存耦合器也是网络需要的,分出 的二成光功率被用于线路监测^[14]。与光纤型比较, 光波导型宽带消波长依存耦合器具有更宽的平坦带 域、波长特性控制自由度大等优点。已报道的设计 数据表明,在石英基介质波导结构下,1280 nm~ 1650 nm 带域内已实现功率耦合比为(50±2.3)% 和(20±1.5)%的特性^[13]。

近年来,出于对有源器件同基集成的考虑,Si 基 SiO₂ 光波导的发展很快。由于 Si 和 SiO₂ 的热膨 胀系数相差较大,虽经退火处理,波导中仍存有压缩 应力。这个应力使沿波导面方向的折射率增加,导 致折射率各向异性,结果劣化了器件的偏振特性。 这类折射率增量的典型值为4×10⁻⁴左右^[15]。日本 NTT 公司曾采用在波导两侧开槽的方法减缓应 力^[15],不过工艺变得更加繁杂,成本上升。

显然 对于通常不采用特殊应力减缓措施的 Si 基 SiO。光波导,进行宽带消波长依存耦合器设计 时 必须考虑工艺带来的折射率各向异性问题。在 包含前述四个窗口的宽带内设计一个平坦的宽带消 波长依存耦合器 涉及到的基础因素本来已很多 再 加之折射率各向异性,处理十分繁重。为此本文提 出了一种独到的统计优化方法,对折射率各向异性 波导的功率耦合比为 50%和 20% 宽带消波长依存 耦合器做了最优化设计。偏振特性由正交的 E_{11}^x 和 E_{11}^{y} 模来反映, E_{11}^{z} 模对应的折射率增量取典型值 4×10⁻⁴。此方法的特点是大大减少了设计步骤,易 于把握运算方向,很快逼近最佳区域。计算结果用 三维波束传播法(BPM)^{16]}作了计算机模拟运行。 结果表明 在 1280 nm~1650 nm 带域内 ,功率耦合 比为 50% 的宽带消波长依存耦合器的输出特性是 (50±2.1)%,偏振变动量小于0.65%;功率耦合比 为20%的宽带消波长依存耦合器的输出特性是 (20±1.4)%,偏振变动量小于0.20%。

2 设计基本理论

宽带消波长依存耦合器由图 1 所示马赫-曾德 尔干涉型波导耦合器构成。它由两个方向性耦合器 和一个光路差调整结构组成。输入端和输出端的方 向性耦合器的平行段长度分别为 L₁ 和 L₂ ,考虑到 在平行段的两端的弯曲部分也发生光波的耦合 ,用 某个等效耦合长度增量 L_e来反映这个效应。ΔL 是 上下两支波导的长度差。A_{in} 代表入射光振幅 ,A_{out} 和 B_{out} 分别代表两个输出端的出射光振幅。设上下 两支波导是横截面和折射率完全相同的单模波导 , 那么输出功率耦合比 η 可表示成如下形式

Fig. 1 The construction of Mach-Zehnder interferometer type waveguide coupler used in the design

为了使 E^x₁₁和 E^y₁₁模在 1280 nm~1650 nm 带域 内获得所要求的、近乎一致的输出功率耦合比 本文 采用统计评价的方法来处理。用字母 O 代表设计追 求的目标功率耦合比 ,用字母 D 表示 η 和O 的差 ,用 下标 *m* 区别两个不同模E^x₁₁和 E^y₁₁,用下标 *n* 区别各 个被考虑的波长 ,得到

$$D_{mn} = \eta_{mn} - O$$
, $m = 1.2$; $n = 1.2$,

进一步定义如下评价函数 ∂ 来统计反映在所考虑的 波长带域上、包括两个偏振模在内的输出功率耦合 比的设计值与目标值的吻合程度,

$$\delta = \sum_{m} \sum_{n} D_{m}^{2}$$
, $m = 1 \ 2$; $n = 1 \ 2$,(3)

显然 ,δ 愈小 ,设计愈趋近目标。由于 η 是波长的连续函数 ,以合理的采样密度在波长带域上离散抽样可以保障评价函数 δ 反映问题的实质。

依据导模特性以及方向性耦合器的耦合原理, 如果波导截面尺寸、折射率、间隔 S 以及平行段两 端弯曲形状一经确定, L_e 、 L_e 和 β 随之确定。根据 (1)式,可用于调整的参数只有 L_1 、 L_2 和 ΔL_e 于是 问题归结为在适当选择的波导参数和间隔 S 的前 提下,找出一组几何参数 L_1 、 L_2 和 ΔL , (c)(3)式趋 于最小。数学上表现为求解下列方程组的解

$$\left.\begin{array}{c} \partial \delta / \partial L_{1} = 0 ,\\ \partial \delta / \partial L_{2} = 0 ,\\ \partial \delta / \partial \Delta L = 0. \end{array}\right\}$$
(4)

(4)式是一个超越方程组,得不到封闭解。可以采用数值方法,例如采用对波导参数的细分扫描方法,借助于计算机,求解并非十分困难。

3 导模参数和耦合器基本参数的取 得

器件设计的最终结果将通过三维波束传播法的 模拟运行来验证,故优化设计中使用的基本参数 β 、 L_e 和 L_e 由三维波束传播法计算获得。波导的导模 传播常数 β 由三维波束传播法的横截面有限差分法 算出。方向性耦合器的完全耦合长度 L_e 与耦合器中 的一对本征偶、奇对称模的传播常数 β_e 和 β_e 有如下 关系^[17],

$$L_{\rm c} = \pi / (\beta_{\rm e} - \beta_{\rm o}).$$
 (5)

因而 ,由三维波束传播法求出 β_{e} 和 β_{o} 后 , L_{e} 就被确 定了。

得到 L_e 后,用三维波束传播法算出图 2 给出的 单个方向性耦合器的输出功率比,可以间接地求得 等效耦合长度增量 L_e 。在图 2 的结构中,平行段长 度取 L_e ,平行段两端的弯曲伸展部分的几何结构与 图 1 的完全相同。若设两出射波导的出射光振幅分 别是 $A(L_e + L_e)$ 和 $B(L_e + L_e)$ 那么,光功率耦合

Fig. 2 The structure used to take out the parameters for the design by BPM

比 η_{p} 为

$$\eta_{\rm p} = \frac{|B(L_{\rm c} + L_{\rm e})|^2}{|A(L_{\rm c} + L_{\rm e})|^2 + |B(L_{\rm c} + L_{\rm e})|^2}.$$
 (6)

用单个方向性耦合器公式 ,容易导出

$$L_{\rm e} = \frac{2L_{\rm c}}{\pi} \arccos \sqrt{\eta_{\rm p}}.$$
 (7)

因此,由三维波束传播法求得 η_p后,即刻可得 L_e。

这些参数值与波长、波导结构、折射率、平行波 导间的间隔等要素有关。在进入设计前,有必要估计 性地、通过对这些要素的适当组合,求得相应的各组 β, L_e 和 L_e 。设计过程中往往还需要作补充。我们用 三维波束传播法作了运算,区域是 :x 向 330 μm, y向 60 μm, z 向按不同波长取 15 mm \sim 24 mm 之间。 计算取横向细分宽度 0.4 μm、纵向步长 1 μm。 限 于篇幅,这里仅给出我们的设计结果所使用的两组 数据,它们分别列于表 1 和表 2。其色散关系基于 SiO, 材料,相对折射率差定义为

$$\Delta = (n_c^2 - n_s^2)(2n_c^2),$$

 n_c 和 n_s 分别为波导芯和周围包层的折射率

Table 1. The parameters for designing 50% WINC obtained by three-dimensional BPM. Its dispersion characteristic is based on the SiO₂ material. The section size of the guide core is 8 μ m × 8 μ m, the interval between the parallel guides is 5 μ m, and the relative refractive index difference Δ is 0.3%

wavelength/nm	E_{11}^x mode			E_{11}^{ν} mode		
	$eta/\mu { m m}^{-1}$	$L_{\rm c}/{ m mm}$	$L_{\rm e}/{ m mm}$	$eta/\mu\mathrm{m}^{-1}$	$L_{\rm c}/{ m mm}$	$L_{\rm e}/{ m mm}$
1280	7.1172	5.7690	0.8167	7.1153	5.7644	0.8173
1310	6.9523	5.3019	0.8226	6.9504	5.2978	0.8233
1360	6.6939	4.6508	0.8412	6.6918	4.6473	0.8418
1400	6.5000	4.2256	0.8583	6.4982	4.2226	0.8589
1440	6.3171	3.8574	0.8772	6.3153	3.8547	0.8778
1500	6.0610	3.4059	0.8917	6.0593	3.4037	0.8923
1550	5.8627	3.0910	0.9104	5.8611	3.0891	0.9110
1600	5.6768	2.8422	0.9337	5.6752	2.8405	0.9343
1625	5.5882	2.7286	0.9407	5.5867	2.7270	0.9412
1650	5.5020	2.6217	0.9489	5.5005	2.6202	0.9494

Table 2. The parameters for designing 20% WINC obtained by three-dimensional BPM. Its dispersion characteristic is based on the SiO₂ material. The section size of the guide core is 8 μ m × 8 μ m, the interval between the parallel guides is 7 μ m, and the relative refractive index difference Δ is 0.25%

wavelength/nm	E_{11}^x mode			$E_{11}^{\scriptscriptstyle y}$ mode		
	$eta/\mu\mathrm{m}^{-1}$	$L_{\rm c}/{ m mm}$	$L_{\rm e}/{ m mm}$	$eta/\mu\mathrm{m}^{-1}$	$L_{\rm c}/{ m mm}$	$L_{\rm e}/{ m mm}$
1280	7.1169	10.0540	0.9589	7.1149	10.0443	0.9598
1310	6.9495	9.0361	0.9769	6.9476	9.0276	0.9778
1360	6.6908	7.9409	0.9906	6.6890	7.9339	0.9915
1400	6.4975	7.0650	1.0016	6.4957	7.0590	1.0025
1440	6.3146	6.1894	1.0126	6.3129	6.1842	1.0134
1500	6.0585	5.4191	1.0370	6.0571	5.4152	1.0378
1550	5.8605	4.7781	1.0572	5.8589	4.7745	1.0580
1600	5.6746	4.3125	1.0780	5.6731	4.3095	1.0787
1625	5.5873	4.1621	1.0880	5.5858	4.1592	1.0888
1650	5.5000	4.0116	1.0981	5.4985	4.0090	1.0989

4 设计结果

对 50% 功率耦合比宽带消波长依存耦合器, E_{11}^{x} 和 E_{11}^{y} 模在波长 1280 nm~1650 nm 间离散提取 7 个波长,共计 14 个计算点进行了统计优化计算。 经过适当的探索性运算和归纳整理后,选取表1给 出的波导和模参数。超越方程组(4)的计算精度控 制在 $\pm 1 \times 10^{-5}$ 之间,结果得到与δ最小值0.0028 对应的器件几何参数 L_1 、 L_2 和ΔL分别为 1.7350 mm、0.3835 mm和0.6885 μ m。将此数据 代入(1)武,并将波长点扩展到10个,求得各波长下 E_{11}^{x} 和 E_{11}^{y} 模的输出功率比示于表3。由表3可见, 在370 nm宽带内实现了50%功率耦合,且应力引起 的偏振变动得到了有效的抑制。图3是该器件的三 维波束传播法仿真运行结果,截面区域、分点以及步 长与前节所述三维波束传播法相同,长度取 17.5 nm。该结果与表3吻合得很好。包含4个窗 口的波段1280 nm~1650 nm 的输出比均在(50± 2.1)%以内,偏振变动不大于0.65%。

Fig. 3 The analytical result obtained by three-dimensional $$\operatorname{BPM}$, of 50 % coupling ratio WINC

Table 3. The design result of 50% WINC using the statistical optium method

Wavelength	coupling ratio for	coupling ratio for
/nm	$E_{11}^x \mod \%$	E_{11}^{y} mode / %
1280	48.43	48.46
1310	50.34	50.36
1360	51.95	51.95
1400	51.77	51.76
1440	50.78	50.76
1500	48.86	48.84
1550	48.13	48.12
1600	48.81	48.81
1625	49.99	50.01
1650	51.69	51.71

同样的过程用于 20% 宽带消波长依存耦合器 的最优化设计。波导和模参数归结为表 2。设计过 程中领会到 20%比 50%易于实现平坦化,故采用 6 个波长共计 12 个计算点做了统计优化。求出 δ 的 最小值为 0.0007,对应的 L_1 、 L_2 和 ΔL 分别为 2.2471 mm、1.0493 mm 和 0.6144 μ m。表 4 给出 了器件在 10 个波长点上两个偏振模的输出特性的 计算值。

三维波束传播法的结果示于图 4,1280 nm~ 1650 nm 带域的输出比已被控制在(20±1.4)%以 内,偏振变动小于 0.20%。

Fig. 4 The analytical result obtained by three-dimensional $$\operatorname{BPM}$, of 20% coupling ratio WINC

Table 4. The design result of 20% WINC using the statistical optium method

Wavelength	coupling ratio for	coupling ratio for
/nm	E_{11}^x mode/ %	E_{11}^{y} mode / %
1280	19.95	19.96
1310	20.94	20.95
1360	20.53	20.53
1400	20.28	20.27
1440	20.19	20.18
1500	18.82	18.82
1550	18.91	18.91
1600	19.80	19.80
1625	20.31	20.32
1650	21.13	21.14

结论 提出并采用了适合于宽带消波长依存耦合器 的统计优化设计方法。对 Si 基 SiO₂ 光波导做了带 宽为 370 nm 的 50%和 20%功率耦合比宽带消波长 依存耦合器的设计。在设计中考虑了制造工艺中应 力引起的折射率各向异性,并对偏振变动作了优化 处理。三维波束传播法仿真运行结果表明,在 1280 nm~1650nm 带域内,两个正交偏振态均实现了功 率耦合比为(50±2.1)%和(20±1.4)%、偏振变动 量分别小于 0.65%和 0.20%的良好特性。

参考文献

- [1]江村克己. 超大容量光ファイバー通信. 应用物理, 1998,67(5)537~543
- [2] 冈明 渡边隆市. FTTH 时代の光ファイバケーブル システム技术.オプトロニクス技术. 1999, 206(2): 115~119
- [3] Miki T. Toward the service-rich era. IEEE Commun. Mag., 1994, 32(2) 34~39
- [4] Kobayashi I, Tsuji H. Research and development of fiberoptic subscriber network systems. NTT R & D ,1993 ,42
 (7) 849~856
- [5]石原直.情报通信技术の展望.精密工学会,1998,

64(1**)**9~13

- [6] Kawanishi S, Takara H, Uchiyama K. 1.4 Tbit/s (200 Gbit/s×7 ch.), 50 km optical transmission experiment. Electron. Lett., 1997, 33 (20):1716~1717
- [7]山林由明,中泽正隆,龍口浩一. テラビット传送技术. NTT R & D, 1999, 48(1) 43~58
- [8] Morioka T , Takara H , Kawanishi S. 1 Tb/s (100 Gbit/s × 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source. *Electron*. *Lett*., 1996, 32 (10) 908~907
- [9] Kawanishi S, Takara H, Morioka T. Single channel 400 Gbit/s time-division-multiplexed transmission of 0. 98 ps pulses over 40 km employing dispersion slope compensation. *Electron*. *Lett.*, 1996, 32 (10) 916~917
- [10] Nakazawa M, Yoshida E, Yamamoto T et al.. TDM single channel 640 Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror. Electron. Lett., 1998, 34(9) 907~908

- [11]小林郁太郎. テラビット通信技术の幕开け. NTT R & D,1999,48(1)21~25
- [12]北 雅一,长谷川淳,佐藤荣裕.スターカップラを使 のた加入者系光传送システム.日立评论,1995,77 (9):15~18
- [13]高户范夫, 文明 (冈本胜就等. 石英系导波型光カプ ラ技术. NTT R & D, 1994, 43(11):1281~1288
- [14] Jinguji K, Takato N, Sugita A. Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio. *Electron*. *Lett.*, 1990, 26(17):1326~1327
- [15] Kawachi M. Silica waveguides on silicon and their application to integrated-optic components. Opt. & Quantum Electron., 1990, 22(3) 391~416
- [16] Chung Y , Dagli N. An assessment of inite different beam propagation method. IEEE J. Quantum Electron., 1990, QE-26(8):1335~1339
- [17] 西源浩 春名正光,栖原敏明.光集积回路.改定増补 版,东京:オーム社,1993.9~49

Design of Wide Waveband Wavelength-Insensitive Coupler Using Statistical Optimum Method

Chen Baoxue Yuan Yifang

(College of Optics and Electron Information Engineering, University of Shanghai for Science and Technology, Shanghai 200093)

Mamoru Iso

(Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan) (Received 25 February 2000; revised 22 June 2000)

Abstract: A statistical optimum design method suitable for wide waveband wavelengthinsensitive coupler (WINC) is proposed. Using the method, silica waveguides type 50% and 20% coupling ratio WINCs are designed with the optimization of the polarized light fluctuation. The design results are verified by the 3D-BPM simulation, and show that the coupling ratios of $(50 \pm 2.1)\%$ (the polarized fluctuation <0.65%) and $(20 \pm 1.4)\%$ (the polarized fluctuation < 0.20%) in a wide wavelength region of 1280 nm~1650 nm are realized, respectively.

Key words : wavelength-insensitive coupler ; statistical optimum design ; waveguide ; SiO_2 waveguide ; wide waveband power coupler